Comparison of discriminant function and classification tree analyses for age classification of marmots

نویسندگان

  • Tim J. Karels
  • Andrew A. Bryant
  • David S. Hik
چکیده

We evaluated the predictive power of two classification techniques, one parametric !/ discriminant function analysis (DFA) and the other non-parametric !/ classification and regression tree analysis (CART), in order to provide a non-subjective quantitative method of determining age class in Vancouver Island marmots (Marmota vancouverensis ) and hoary marmots (Marmota caligata ). For both techniques we used morphological measurements of known-age male and female marmots from two independent population studies to build and test predictive models of age class. Both techniques had high predictive power (69!/86%) for both sexes and both species. Overall, the two methods performed identically with 81% correct classification. DFA was marginally better at discriminating among older more challenging age classes compared to CART. However, in our test samples, cases with missing values in any of the discriminant variables were deleted and hence unclassified by DFA, whereas CART used values from closely correlated variables to substitute for the missing values. Therefore, overall, CART performed better (CART 81% vs DFA 76%) because of its ability to classify incomplete cases. Correct classification rates were approximately 10% higher for hoary marmots than for Vancouver Island marmots, a result that could be attributed to different sets of morphological measurements. Zygomatic arch breadth measured in hoary marmots was the most important predictor of age class in both sexes using both classification techniques. We recommend that CART analysis be performed on data-sets with incomplete records and used as a variable screening tool prior to DFA on more complete data-sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

A novel hybrid method for vocal fold pathology diagnosis based on russian language

In this paper, first, an initial feature vector for vocal fold pathology diagnosis is proposed. Then, for optimizing the initial feature vector, a genetic algorithm is proposed. Some experiments are carried out for evaluating and comparing the classification accuracies which are obtained by the use of the different classifiers (ensemble of decision tree, discriminant analysis and K-nearest neig...

متن کامل

معرفی الگوریتم های مدل رده بندی درختی و کاربرد آن در تعیین عوامل مؤثر بر ابتلا به سرطان مری در استان گلستان

Background & objective: One of the common purposes of medical research is Determination of effective factors on the occurrence of event. Due to the interaction of risk factors regression models, discriminant analysis and classification procedures used. Uses of these models require making the assumption which in the medical data isn’t usually established. Therefore, alternative methods must be u...

متن کامل

Comparison of Decision Tree and Naïve Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment

In today world of internet, it is important to feedback the users based on what they demand. Moreover, one of the important tasks in data mining is classification. Today, there are several classification techniques in order to solve the classification problems like Genetic Algorithm, Decision Tree, Bayesian and others. In this article, it is attempted to classify researchers to “Expert” and “No...

متن کامل

Comparison of Decision Tree and Naïve Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment

In today world of internet, it is important to feedback the users based on what they demand. Moreover, one of the important tasks in data mining is classification. Today, there are several classification techniques in order to solve the classification problems like Genetic Algorithm, Decision Tree, Bayesian and others. In this article, it is attempted to classify researchers to “Expert” and “No...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003